Protein Phylogenetic Analysis of Ca2+/cation Antiporters and Insights into their Evolution in Plants
نویسندگان
چکیده
Cation transport is a critical process in all organisms and is essential for mineral nutrition, ion stress tolerance, and signal transduction. Transporters that are members of the Ca(2+)/cation antiporter (CaCA) superfamily are involved in the transport of Ca(2+) and/or other cations using the counter exchange of another ion such as H(+) or Na(+). The CaCA superfamily has been previously divided into five transporter families: the YRBG, Na(+)/Ca(2+) exchanger (NCX), Na(+)/Ca(2+), K(+) exchanger (NCKX), H(+)/cation exchanger (CAX), and cation/Ca(2+) exchanger (CCX) families, which include the well-characterized NCX and CAX transporters. To examine the evolution of CaCA transporters within higher plants and the green plant lineage, CaCA genes were identified from the genomes of sequenced flowering plants, a bryophyte, lycophyte, and freshwater and marine algae, and compared with those from non-plant species. We found evidence of the expansion and increased diversity of flowering plant genes within the CAX and CCX families. Genes related to the NCX family are present in land plant though they encode distinct MHX homologs which probably have an altered transport function. In contrast, the NCX and NCKX genes which are absent in land plants have been retained in many species of algae, especially the marine algae, indicating that these organisms may share "animal-like" characteristics of Ca(2+) homeostasis and signaling. A group of genes encoding novel CAX-like proteins containing an EF-hand domain were identified from plants and selected algae but appeared to be lacking in any other species. Lack of functional data for most of the CaCA proteins make it impossible to reliably predict substrate specificity and function for many of the groups or individual proteins. The abundance and diversity of CaCA genes throughout all branches of life indicates the importance of this class of cation transporter, and that many transporters with novel functions are waiting to be discovered.
منابع مشابه
Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.)
The Ca2+/cation antiporters (CaCA) superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classi...
متن کاملLinking the evolution of plant transporters to their functions
In the past decade, an increasing number of plant genomes ranging from unicellular alga to trees have been completely sequenced. As the transport of water, nutrients, hormones, and metabolites in aquatic plants could differ from that of non-vascular, vascular or flowering plants, this rich resource has the potential to answer many of our most urgent questions: How did specific transporters evol...
متن کامل(مقاله کوتاه) تجزیه فیلوژنی و تکامل مولکولی لپتین
In the current study, phylogenetic analysis and molecular evolution of the mammalian’s Leptin was investigated. Data was achieved and aligned by searching its genome database, while all examined mammals contained only a single copy of the Leptin. The nucleotide substitution rate of the sequences and molecular evolution of the Leptin were calculated by maximum likelihood and neighbor-joinin...
متن کاملPhylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467
Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...
متن کاملPhylogeny of Na+/Ca2+ exchanger (NCX) genes from genomic data identifies new gene duplications and a new family member in fish species.
The Na+/Ca2+ exchanger (NCX) is a member of the cation/Ca2+ antiporter (CaCA) family and plays a key role in maintaining cellular Ca2+ homeostasis in a variety of cell types. NCX is present in a diverse group of organisms and exhibits high overall identity across species. To date, three separate genes, i.e., NCX1, NCX2, and NCX3, have been identified in mammals. However, phylogenetic analysis o...
متن کامل